Через точку A, не лежащую на окружности , к этой окружности проведите касательные AB и AC. Точки B и C- точки касания . Докажите что, AB=AC

Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А.
рассмотрим получившиеся треугольники АВО и АСО, в них:
угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента:
- катет ОВ = катет ОС (радиусы окружности)
- ОА - общ. гипотенуза
из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ
ч. т. д.

Оцени ответ
Не устраивает ответ?

Если твой вопрос не раскрыт полностью, то попробуй воспользоваться поиском на сайте и найти другие ответы по предмету Геометрия.

Найти другие ответы

Загрузить картинку
Недавние вопросы